A convergent quasi-Hermite-Féjer interpolation process
نویسندگان
چکیده
منابع مشابه
Optimal Sixteenth Order Convergent Method Based on Quasi-Hermite Interpolation for Computing Roots
We have given a four-step, multipoint iterative method without memory for solving nonlinear equations. The method is constructed by using quasi-Hermite interpolation and has order of convergence sixteen. As this method requires four function evaluations and one derivative evaluation at each step, it is optimal in the sense of the Kung and Traub conjecture. The comparisons are given with some ot...
متن کاملConstrained Interpolation via Cubic Hermite Splines
Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation. It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...
متن کاملA New Approach to Improved Multiquadric Quasi-Interpolation by Using General Hermite Interpolation
Abstract In this paper, a new approach to improve univariate multiquadric operators is surveyed. The presented scheme is obtained by using Hermite interpolating polynomials where the function is approximated by generalized LB quasi-interpolation operator. Error analysis shows that the convergence rate depends on the shape parameter c. Thus, our operators could provide the desired smoothness and...
متن کاملHermite Interpolation Outperforms Nyström Interpolation
Hermite interpolation is shown to be much more stable than Nyström interpolation in the context of solving classic Fredholm second kind integral equations of potential theory in two dimensions using panel-based Nyström discretization. AMS subject classification (2000): 31A10,45B05,65D05,65R20.
متن کاملOn an Interpolation Process of Lagrange–hermite Type
Abstract. We consider a Lagrange–Hermite polynomial, interpolating a function at the Jacobi zeros and, with its first (r−1) derivatives, at the points ±1. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator in certain suitable weighted L-spaces, 1 < p < ∞, proving a Marcinkiewicz inequality involving the derivative of the polynomial at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1975
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700023868